This document provides a concise summary of all the key concepts, formulas, and principles from our discussions on electricity and magnetism.
These concepts are the building blocks of electricity:
These formulas describe the fundamental relationships between the electrical quantities.
Ohm's Law:
$$V = IR$$
Power Formulas:
$$P = VI$$
$$P = I^2 R$$
$$P = \frac{V^2}{R}$$
Energy Formula:
$$E = Pt$$
This is the force that arises from moving electric charges.
Magnetic Field of a Long, Straight Wire:
$$B = \frac{\mu_0 I}{2\pi r}$$
where $\mu_0$ is the permeability of free space ($4\pi \times 10^{-7} \, \text{T} \cdot \text{m/A}$).
Lorentz Force on a Moving Charge:
$$F = |q|vB \sin\theta$$
These four fundamental equations describe the behavior of electric and magnetic fields:
$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$
$$\nabla \cdot \mathbf{B} = 0$$
$$\nabla \times \mathbf{E} = - \frac{\partial \mathbf{B}}{\partial t}$$
$$\nabla \times \mathbf{B} = \mu_0 \left( \mathbf{J} + \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$
Here are the step-by-step proofs for how each derived unit is expressed in terms of the four base units: kilogram (kg), meter (m), second (s), and ampere (A).
1 V is defined as 1 Joule per Coulomb ($1 \, \text{J/C}$).
$$1 \, \text{V} = \frac{1 \, \text{J}}{1 \, \text{C}}$$
Since $1 \, \text{J} = 1 \, \text{N} \cdot \text{m}$ and $1 \, \text{C} = 1 \, \text{A} \cdot \text{s}$, we can substitute:
$$1 \, \text{V} = \frac{1 \, \text{N} \cdot \text{m}}{1 \, \text{A} \cdot \text{s}}$$
Since $1 \, \text{N} = 1 \, \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$:
$$1 \, \text{V} = \frac{\left( \frac{\text{kg} \cdot \text{m}}{\text{s}^2} \right) \cdot \text{m}}{\text{A} \cdot \text{s}} = \frac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^3}$$
1 $\Omega$ is defined as 1 Volt per Ampere ($1 \, \text{V/A}$).
$$1 \, \Omega = \frac{1 \, \text{V}}{1 \, \text{A}}$$
Using the derived base units for the Volt ($1 \, \text{V} = 1 \, \frac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^3}$):
$$1 \, \Omega = \frac{\left( \frac{\text{kg} \cdot \text{m}^2}{\text{A} \cdot \text{s}^3} \right)}{\text{A}} = \frac{\text{kg} \cdot \text{m}^2}{\text{A}^2 \cdot \text{s}^3}$$
1 W is defined as 1 Joule per second ($1 \, \text{J/s}$).
$$1 \, \text{W} = \frac{1 \, \text{J}}{1 \, \text{s}}$$
Using the base units for the Joule ($1 \, \text{J} = 1 \, \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$):
$$1 \, \text{W} = \frac{\left( \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2} \right)}{\text{s}} = \frac{\text{kg} \cdot \text{m}^2}{\text{s}^3}$$
1 J is defined as 1 Newton-meter ($1 \, \text{N} \cdot \text{m}$).
$$1 \, \text{J} = 1 \, \text{N} \cdot \text{m}$$
Using the base units for the Newton ($1 \, \text{N} = 1 \, \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$):
$$1 \, \text{J} = \left( \frac{\text{kg} \cdot \text{m}}{\text{s}^2} \right) \cdot \text{m} = \frac{\text{kg} \cdot \text{m}^2}{\text{s}^2}$$
1 T is defined as 1 Newton per Ampere-meter ($1 \, \frac{\text{N}}{\text{A} \cdot \text{m}}$).
$$1 \, \text{T} = \frac{1 \, \text{N}}{1 \, \text{A} \cdot \text{m}}$$
Using the base units for the Newton ($1 \, \text{N} = 1 \, \frac{\text{kg} \cdot \text{m}}{\text{s}^2}$):
$$1 \, \text{T} = \frac{\left( \frac{\text{kg} \cdot \text{m}}{\text{s}^2} \right)}{\text{A} \cdot \text{m}} = \frac{\text{kg}}{\text{A} \cdot \text{s}^2}$$
The presentations included several interactive visualizations to help understand these concepts: